化学自习室移动版

首页>化学博览>科技信息>

化学世界未解之谜——如何捕获更多太阳能?

化学世界未解之谜——如何捕获更多太阳能?

每当太阳从东方升起,似乎都在提醒人类,对于太阳这个巨大无比的清洁能源来源,我们目前开发利用得实在太少太少。经济问题是最大的障碍:用来获取太阳能的传统光伏电池板(photovoltaic panel)的高额成本限制了它的使用。但是,在地球上,几乎所有的生命最终都由太阳的能量驱动,而能量来自光合作用(photosynthesis)。这恰恰说明了,太阳能电池并非需要极高的转换效率,它们只须像树叶那样,通过廉价的方法提供充足的能量。

美国亚利桑那州立大学的德文斯·加斯特(Devens Gust)说:“太阳能研究的一个最值得期待的方向就是,通过阳光来制造燃料。”利用太阳能来制造燃料的最简单方法就是分解水,产生氢气和氧气。美国加州理工学院的内森·S·刘易斯(Nathan S. Lewis)和同事发明的一种人造树叶就能实现上述想法,他们的工具是硅纳米线阵列。

今年年初,美国麻省理工学院的丹尼尔·诺切拉(Daniel Nocera)和合作者展示了一种硅基薄膜,在这种薄膜中,一种以钴(cobalt)为主要成分的光催化剂(photocatalys)能促进水分子分解。据诺切拉估算,1加仑(约3.8升)水分解,提供的能量就能够满足一个发展中国家家庭一天的用量。诺切拉说:“我们的目标是让每个家庭都拥有自己的电站。”

通过催化剂来分解水仍然非常困难。“像诺切拉使用的钴催化剂,还有一些新近发现的基于其他常见金属的催化剂,都是值得期待的,”加斯特说,但目前还没有人能够将它们的制作成本降低到理想范围。

“我们尚不知道自然界中的光合作用催化剂如何工作,这种催化剂基于4个锰(manganese)原子和一个钙(calcium)原子,”加斯特补充说道。

加斯特和同事已经开始着手通过分子器件来实现人造光合作用,这种方式更加接近于自然界中生物的光合作用。经过艰苦努力,他的研究小组已经合成出一些可用于最终分子器件的基本结构单元。但是,在他们面前还有大量的挑战。有机分子,例如自然界用到的那些,很快就会分解或破坏。然而,植物会不断的生产出新的蛋白质来替代那些被破坏的,但至少目前,人造树叶还无法完全模拟一个活细胞进行光合作用的方式及其中的化学机制。

(责任编辑:化学自习室)
说点什么吧
  • 全部评论(0
    还没有评论,快来抢沙发吧!