太阳元素的发现史
时间:2019-03-28 15:19 来源:未知 作者:化学自习室 点击:次 所属专题: 光谱
版权申明:凡是署名为“化学自习室”,意味着未能联系到原作者,请原作者看到后与我联系(邮箱:79248376@qq.com)!
万物生长靠太阳。太阳是一个庞大的火球,给我们光和热。自从发明了望远镜,人们用望远镜研究太阳,看清楚了太阳表面的光斑和黑子。日全食的时候,还可以看到从太阳表面喷出的巨大的火焰——日珥。但是太阳的化学成分是什么,单靠望远镜是看不出来的。
1825年,有一位法国哲学家,名叫孔德,他在他的哲学讲义中武断地说:"恒星的化学组成是人类绝对不能得到的知识。"他的话似乎有点道理。太阳虽然是最近的一颗恒星,但是离我们也有1.5亿千米。谁能飞到这样远的太阳上去取一些物质回来,在化学实验室里作分析呢?况且太阳表面的温度就有6000摄氏度。这是无论如何做不到的。然而,这位哲学家的结论下得早了一点。1859年,就在孔德死后不到三年,一位化学家和一位物理学家合作,发明了一种很巧妙的方法,可以不用离开地球,就能够测定太阳、恒星等遥远的天体的化学组成。
这位化学家是本生,这位物理学家是基尔霍夫。他们发明的方法叫做光谱分析。本生和他的灯本生是德国人,1830年,他大学毕业,才19岁。以后,他除了在大学教书,还研究鼓风炉顶上冒出来的气体,创立了气体分析的方法。1854年,汉堡市开办了煤气工厂,本生的实验室里也装上了煤气。本生发明了一种新式的煤气灯,可以很方便地调节火焰的大小和温度。这种灯,现在的化学实验室中还在使用,大家管它叫本生灯。
故事就是从本生的灯开始的。
本生灯燃烧得最好的时候,温度能达到2300摄氏度,火焰几乎没有颜色。有时候灯没有调节好,火焰会缩到灯管里去,铜制的灯管烧红了,火焰就变成了蓝绿色。而在灯上弯玻璃管的时候,玻璃管烧红了,火焰又变成黄色。这些现象引起了本生的注意。他开始研究各种物质在灯上烧的时候,焰色会发生什么变化。
本生用白金镊子夹了一粒普通的食盐,放到火焰中烧,火焰立刻变成亮黄色,同时闻到呛人的氯气的气味——是高温把食盐(氯化钠)分解了。但是火焰为什么变黄呢?是氯的作用还是钠的作用呢?
为了搞清楚这个问题,本生选用了一些不含氯而含钠的化合物,例如纯碱(碳酸钠)和芒硝(硫酸钠)来做试验。如果这些物质也能使火焰变黄,就可以证明是钠起了作用。结果正是这样。纯碱和芒硝一放到火焰中,火焰立刻变黄了。
最后,本生把金属钠放在火焰中烧,火焰也立刻变成亮黄色。这个决定性的实验,证实了使火焰变黄的确实是钠。实验的成功使本生产生了新的想法:除了钠,别的金属是不是也能使火焰变色呢?他把实验室中所有的化学药品和金属,都-一做了试验。
本生发现,钾和钾的各种化合物使火焰变紫,而钡是绿色火焰,钙是砖红色火焰,锶是亮红色火焰,等等。这是1858年秋天的事,他把这些发现详细地记在实验记录本中。
本生真高兴,他相信他已经发明了一种新的化学分析方法。这种方法不需要复杂的设备,操作又非常简单,只要把需要分析的物质放在灯上烧一烧,看一下火焰的颜色,就能知道它含有什么金属。现在需要的是研究火焰的语言,弄懂各种彩色信号代表什么元素。
彩色火焰之谜
本生搜集了各种各样的化合物来做实验,他用一根白金丝,一端弯一个小圈。用这个工具蘸上一滴溶液,就可以放到火焰中去烧。本生根据他的实验记录编了一张表,列举了什么物质产生什么焰色,反过来也可以由焰色判定是什么物质。信号表编好了,但是用起来并不那么简单,因为需要分析的物质不一定都是纯粹的化合物。遇到混合物会怎么样呢?本生做了一些混合物的焰色试验,结果出现了这样的情况:
钠盐溶液——黄色火焰。
混有钾盐的钠盐溶液——黄色火焰。
混有锂盐的钠盐溶液——黄色火焰。
用三个灯同时烧这三种溶液,结果都出现黄色火焰,看不出任何差别。钠的黄色光太亮了,遮盖了钾的紫色光和锂的红色光。
本生没有灰心,他找来了各种不同颜色的玻璃片,透过有色玻璃去观察火焰。一块深蓝色的玻璃可以吸收掉钠的黄色光,透过蓝玻璃,看出了混在钠盐中的钾盐的紫色光,看出了混在钠盐中的锂盐的红色光。这有色眼镜帮了他的大忙。
但是问题并没有彻底解决。一种未知物质的溶液,能使火焰变成深红色。查查信号表:锂盐——深红色;锶盐——深红色。这未知物质是锂盐还是锶盐呢?分辨不清。本生找了各种颜色的玻璃,想用来区别两种深红色的火焰,但是他失败了。就在这困难的时候,物理学家来帮忙了。
物理学家的建议
本生有个亲密的朋友叫基尔霍夫,是位物理学教授。他们俩经常在一起散步和谈心。
1859年初秋,本生在实验室中做焰色试验已经快一年了。这一天,本生跟基尔霍夫一起散步,他详细地讲了自己的实验和碰到的困难。
"分辨火焰的颜色!分辨火焰的颜色!……"基尔霍夫一边思索,一边喃喃地说。
基尔霍夫对物理学十分精通,他立刻想起了物理界的前辈牛顿首先研究过太阳光,用三棱镜把太阳光分成红、橙、黄、绿、蓝、靛、紫七种颜色;他也想起了已经去世30多年的德国光学专家方和斐,方和斐在45年前自己磨制了石英的三棱镜,详细研究了太阳光和各种灯光的光谱。
基尔霍夫不但对方和斐的实验了解得很清楚,连方和斐亲手磨制的那块三棱镜,还保存在基尔霍夫的实验室中。
基尔霍夫沉思了一会,对本生说:"我是搞物理的。从物理学的角度来看,我认为应当换一个方法试试。那就是不要直接观察火焰的颜色,而应该去观察火焰的光谱。这就可以把各种颜色清清楚楚地区别开了。"这是多么好的建议啊!
本生和基尔霍夫越谈越投机,一个物理学和化学合作的研究方案就这样定下来了。基尔霍夫回去准备实验用的仪器。本生也回到自己的实验室,他把四面的窗户都挂上了遮光的黑布,准备迎接基尔霍夫和他的仪器。
在没有讲本生和基尔霍夫的实验以前,我们先来讲讲1814年方和斐的实验。方和斐在小黑屋子的窗板上开了一条狭缝,太阳光通过这条缝射进屋里,成为一条扁扁的光束。在光束经过的地方放上一块三棱镜。这条光束通过三棱镜,就变成了宽大的扇形,落在对面的墙上,成为从红到紫的各种颜色的光带,这就是太阳的光谱。原来太阳的白光并不是单色的,而是混在一起的各种颜色的光。不同颜色的光通过三棱镜,偏转程度各不相同:紫色光偏转最大,红色光偏转最小,其他颜色的光的偏转程度在紫色光和红色光之间。正因为这个缘故,通过三棱镜的一束太阳光就被拆开了,变成按颜色排列的彩色光谱。
方和斐实际上在重复他的老前辈牛顿的实验,但是作了不少改进。他做了一条使光通过的狭缝;为了把光谱观察得更清楚,还用凸透镜作了一个窥管。方和斐研究了多种灯光的光谱。他本来想找一种只发出一种颜色的光的光源,这个目的没有达到,却发现了另外一些更重要的现象。
方和斐把一盏油灯放在狭缝外面,观察油灯光的光谱。他发现光谱带上有两条极其明亮的黄线,宽窄和狭缝一个样。不管怎样移动三棱镜的位置,转动窥管里的透镜,两条明亮的黄线依然存在。
方和斐拿掉油灯,换上酒精灯,还是有两条黄线;再换上蜡烛,两条黄线依然存在。不仅如此,只要三棱镜和窥管的位置不变,不管是什么灯光,两条黄线总在老位置上。
应该再研究一下太阳光。方和斐用一面镜子,把阳光反射进狭缝。他在太阳的光谱中找那两条明亮的黄线。可是没有,却发现太阳光谱中有许多黑线。方和斐仔细数了数,黑线有500多条,有的深些,有的淡些。他给那些最深的最清楚的黑线,用A、B、C、D、E等编了号。看来,太阳光在黑线的位置上,少了某一些颜色的光。经过仔细观察,方和斐发现灯光光谱中的那两条亮黄线,恰好落在太阳光谱中编号为D的那两条深黑线上,也就是说,位置恰好相同。这真是怪事,灯光发出来的亮黄线,太阳光里恰好没有。但是,方和斐没能解释这是什么原因。
在方和斐以后,有不少人做了类似的实验。他们分析了各种光源,十之八九要出现这两条亮黄线。他们又研究太阳光谱,找到了更多的黑线(后来人们把这种黑线叫做方和斐线)。但是他们和方和斐一样,都说不清楚这是怎么回事。
现在,轮到本生和基尔霍夫来做实验了。
谜解开了
基尔霍夫带了他的仪器,来到本生的实验室。这套仪器是些什么样的宝贝呀?一块方和斐亲手磨制的石英三棱镜;一个直筒望远镜,已经被基尔霍夫锯成两截;还有一个雪茄烟盒;一片打了一道狭缝的圆铁片。都是一些最普通的东西。他们正是用这套简单的仪器,完成了伟大的科学发现。
实验的准备工作开始了。基尔霍夫在雪茄烟盒内糊上了一层黑纸,把三棱镜安装在烟盒中间。在对着三棱镜的两个面的位置上,把烟盒开了两个洞:一个洞装上望远镜的目镜的那半截,这是方和斐的窥管;另一个洞装上望远镜的另外半截,物镜在盒内对着三棱镜,朝外的筒口上盖着那开有细缝的圆铁片,这叫做平行光管。各部分都固定了,烟盒盖上了,世界上第一台"分光镜"就装配好了。
本生也没闲着,他在准备试料。试料有各种纯的金属,各种纯的化合物的溶液。几把白金丝做的小圈,也用硝酸洗得干于净净。
基尔霍夫先让太阳光射在平行光管的细缝上。在窥管中,他看到清晰的太阳光谱,还有那一条条黑色的方和斐线。仪器检查完毕,没有毛病。黑窗帘拉上了,本生点着了煤气灯,基尔霍夫把平行光管对准了煤气灯的火焰,实验开始了。
第一个实验就是食盐(氯化钠)。本生用白金丝蘸了一粒食盐在灯上烧,火焰立刻变成黄色。基尔霍夫把眼睛凑到窥管口上。"我看到两条黄线靠在一起。背景是黑的,只有两条黄线。"基尔霍夫说。
本生重复了他一年前的实验。苏打,芒硝,硝酸钠,各种钠盐都试过了,结果都一样,黑的背景上有两条靠在一起的黄线,而且位置也不改变。看来,这两条黄线就是钠的谱线。
下一个实验是钾。本生用白金丝蘸了钾盐去烧,火焰变成了淡紫色。基尔霍夫看了几秒钟,说道:"在黑暗背景上有一条紫线和一条红线。当中的光谱连成一片,没有明亮的线条。"实验在继续。所有的锂盐都产生一条明亮的红线和一条较暗的橙线。所有的锶盐都产生一条明亮的蓝线和几条红线、橙线和黄线。
总之,每种元素都产生几条特有的谱线,这些谱线都有固定的位置。
本生和基尔霍夫轮换着烧蘸有各种物质的白金丝,轮换着看光谱。后来,本生装了一个架子把白金丝夹住,两个人在自制的分光镜前你看一眼我看一眼,一直看到眼睛都花了。
他们还不想休息,准备做一个新的实验。基尔霍夫揉着发酸的眼睛,在屋内走来走去。本生也一声不响,他把几种不同的盐混在一起。
实验开始了,本生用白金丝把混合的盐送到火焰中去,火焰立刻变成亮黄色。基尔霍夫趴在分光镜前仔细观察。
实验室内静悄悄的,最后,基尔霍夫说话了:"你掺在一起的有钠盐、钾盐、锂盐和锶盐。"
"对!"本生激动极了。他把白金丝夹在架子上,立刻跑过去看。光谱显示得十分清楚:两条靠在一起的亮黄线是钠的;那条紫线是钾的;红线是锂的;属于锶的那条蓝线也很清楚。
成功了!他们这时候的高兴劲儿是可以想象出来的。他们创立了一种新的化学分析方法——光谱分析法。
大搜查
本生和基尔霍夫像着了迷一样,在实验室中夜以继日地工作。他们编制了各种已知元素的光谱表。凡是能到手的东西,他们都要放到灯上去烧一烧,看一看光谱,搜查里面到底有些什么元素。
光谱分析法非常灵敏,只要1毫克(千分之一克)的三百万分之一的钠,送到火焰里,在光谱中就能看到钠的黄线。只要用手指摸一下白金丝,就可以烧出黄线,因为汗水中就有氯化钠。他们发现海水中,牛奶中,烟灰中,都含有锂。
更重要的是他们用光谱分析方法,在一种矿泉水中发现了新元素铯;在一种云母矿中又发现了另一种新元素铷。在铯的光谱中有两条美丽的蓝色的谱线,因此,他们把它叫做"铯"——拉丁文的原意是"蓝色的";铷的光谱中有两条深红色的谱线,因而就被称为"铷"——拉丁文的原意是"红色的"。
铯和铷的发现,是光谱分析的第一个大胜利!
光谱分析这种新方法很快就推广了,不少工厂成批地制造分光镜和光谱仪。现在,任何一个大的化验室中都有光谱仪,并且利用照相代替了肉眼观测。现代的光谱仪不仅能分析物质的组成,还能求出其中各种元素的含量。而各种光谱仪的老祖宗,就是基尔霍夫和本生装配的那台简陋的分光镜。
用光谱分析各种物质的组成,用光谱寻找新的元素,一时成了最时髦的科学研究工作。许多科学家在实验室中装了分光镜,参加了这次大搜查。除了本生和基尔霍夫发现的铷和铯以外,别的科学家还发现了铊、铟、镓、镱、钛、铥、钐、钕、镨等元素。这中间还有一个重要的元素,那就是我们要讲的太阳元素——氦。
又解开了一个谜
正当本生忙于搜罗各种东西进行光谱分析的时候,基尔霍夫总想着他的那位物理学前辈方和斐观察到的黑线。他认为这个谜一定要解开:为什么太阳光谱的黑线D[[[1、D[[[2,恰好和钠的两条黄线位置一样呢?难道太阳上缺少钠吗?
1859年10月的一天,基尔霍夫开始研究这个问题。他先用分光镜看太阳的光谱,记住了D线的位置,然后遮住阳光,点燃了本生灯,在灯上烧起钠盐。果然,钠的两条亮黄线正好出现在太阳光谱的D线的位置上。
基尔霍夫想:让太阳光和烧钠的灯光同时射人分光镜,钠的亮黄线能不能把太阳光谱的黑线补起来呢?他打开遮板,让太阳光穿过本生灯的火焰照人分光镜。他在火焰上烧起钠盐来,火焰变黄了。但是出乎意料,在分光镜中,他看到太阳光谱中的两条D线不但没有亮起来,反而变得更黑了。
真奇怪!再挡住太阳光看一看,钠的两条亮黄线又出现了,而且正在那两条黑线的位置。
基尔霍夫想了很久,他又准备了一个新的实验。他不用太阳光了,换用了石灰光。用温度很高的氢氧焰去烧石灰,石灰会发出耀眼的白光。基尔霍夫知道,石灰光的光谱是连成一片的,没有特别亮的线,也没有方和斐黑线。
基尔霍夫在石灰光和分光镜中间放上本生灯,烧起钠盐。看!石灰光的连续光谱上出现了两条黑线,正好在太阳光谱的D线的位置上。换一种盐试试,又出现了新的黑线,位置和那种盐的谱线的位置一样。
原来是这样!基尔霍夫激动得一夜没睡,第二天赶忙跑去找本生。"昨天我弄清楚了:太阳上不是没有钠,而是有钠!"
太阳中心的温度极高,发出来的光本来是连续光谱。但是太阳外围的气体温度比较低。在这外围气体中有什么元素,就会把连续光谱中的相应的谱线吸收掉。这正像本生灯中的钠蒸气,能使石灰光的连续光谱出现两条黑线一样。方和斐黑线的谜解开了。原来这些黑线和亮线一样,也能表示太阳大气中有什么元素。
本生和基尔霍夫又用铁作了实验。铁的光谱有60多条亮线,而在太阳光谱中,这60多条亮线的位置上正好有60多条方和斐线。这说明:太阳上有铁。
1859年10月20日,基尔霍夫向柏林科学院报告了他的发现。他根据太阳光谱中方和斐线的位置,证明太阳上有氢、钠、铁、钙、镍等元素。
这个新发现立刻传遍全球:本生和基尔霍夫在地球上的实验室里,测出了太阳是由什么组成的!我们开头提到的那位哲学家的结论,这一回彻底破产了。
自此以后,光谱分析不仅化学家经常用,也成为天文学家的有力手段。天文学家利用光谱,不断地揭露遥远的星球的秘密。
就这样,物理学家帮助化学家解决了化学的难题,化学家帮助物理学家解决了物理学的难题,他们还共同解决了天文学的难题。
太阳元素
日全食是天文学家研究太阳的最好机会。这时候,月亮正运转到地球和太阳中间,把太阳完全遮住了。这样就可以看清楚太阳最外层的大气——日冕,还可以看到太阳表面喷出的巨大火焰——日珥。
1860年7月16日,在西班牙发生日全食。许多天文学家把注意力集中在日珥上,还画下了图。大家都想解释,太阳表面的这种突出物到底是什么。但是日全食只有几分钟的时间,要想仔细研究,得等待下一次机会。八年以后,1868年8月18日,印度又发生日全食。法国的天文学家詹森带着分光镜,长途跋涉来到印度。日全食开始了,詹森把分光镜的细缝对准了日珥。他看到了几条亮线:一条红的,一条蓝的,还有一条黄的。很清楚,红线和蓝线是氢的谱线。而那条黄线呢?难道是钠的吗?钠应该有两条黄线,可是只观测到一条啊!他想再看看清楚,但是日全食已经过去了。难道又要等上十年八年,到下次日全食的时候再研究吗?
詹森注意到这几条线很亮,因此他想:不是日食的时候,也许同样能观测到日珥的光谱。
第二天,太阳又升起在天空中。詹森把分光镜的狭缝对准太阳的边缘,相当于昨天看到的日珥的位置,昨天观测到的光谱又出现在分光镜里。成功了!经过研究,詹森发现那条黄线不是钠的两条谱线,而是在钠的谱线旁边的一条新的谱线。
詹森立刻写信把他的发现报告法国科学院。当时的交通很不方便,这封信在路上走了两个多月,于10月26日才到达巴黎。无巧不成书,在法国科学院收到詹森的信的同一大,还收到了一封从英国寄来的信。这是英国天文学家罗克耶在10月20日写的,报告的是同一件事。罗克耶在英国用同样方法观察了日珥,也发现了那条不属于钠的新的黄线。
这两封信同时在法国科学院宣读。大家惊叹万分,决定铸造一块金质的纪念牌:一面刻着驾着四套马战车的传说中的太阳神阿波罗像,另一面刻着詹森和罗克耶的头像,下面写着:"1868年8月18日太阳突出物分析"。詹森和罗克耶在日珥的光谱中发现了什么呢?就是那条新的黄线。经过查对,这条黄线跟当时已知的各种元素的谱线都不重合。结论只有一个,这条黄线属于一种未知的新元素。这种未知的新元素不是在地球上,而是用光谱分析,首先在太阳上找到的。罗克耶把这种新的元素命名为helium(希腊文"太阳"的意思)——我国就译作"氦"。
太阳元素——氦被发现了,但是它有什么样的性质,人们还没法知道。天文学家们猜测:氦可能是一种很轻的气体。关于怎样在地球上找到氦的故事,我们下边再讲。
一封读者来信
罗克耶在发现氦的第二年(1869年),他在英国创办了一种科学杂志,名叫《自然》,这种杂志很有名,一直出版到现在。全世界的物理学家和化学家,没有一个不看这本杂志的。
1892年,《自然》的9月号上刊登了一篇读者来信,信中说:"我对于最近测得的氮的几个密度值颇有怀疑,希望贵刊的读者们能提供宝贵意见。我用两种方法制得的氮的密度不一样。虽然两个密度相差只有千分之五,但是仍然超出了实验误差的范围。"署名是:"瑞利,1892年9月24日"。
这是怎么回事?瑞利是什么人?
瑞利是英国剑桥大学的物理学教授。从1882年开始,他研究各种气体的密度。虽然在上一个世纪,已经有人做过这方面的工作,但是当时的仪器比较粗糙,结果当然不够准确。
瑞利的实验室里有当时最精密的天平,灵敏度达到万分之一克(0.0001克)。他想把各种气体的密度测得准确一些。气体密度就是1升气体的质量,以克数计算。气体的体积会随着温度和压力而变化,所以必须规定,气体的密度是在0摄氏度和1个大气压下(这叫做"标准状态"),每1升的质量。
为了测量气体的密度,瑞利做了一个大玻璃球。他先仔细地测量出它的容积有多大,然后用真空泵把球内的空气抽掉,称出真空球有多少克。再在球内灌满某种纯粹的气体,例如由电解水得到的氢气,再称有多少克。这就可以算出玻璃球里的氢气有多少克。用玻璃球的容积去除氢气的质量就能得到氢气的密度。
测量了氢气测量氧气,然后又测量氮气。
说来简单,做起来却不容易。瑞利对每种气体的密度都要测量好几遍。不仅如此,对于同一种气体,还要用不同的方法制出它的纯粹的气体,分别进行测量,看看结果一样不一样。
比如说测量氧气的密度,瑞利先用电解水制造的氧气,又用氯酸钾加热分解制造的氧气,还用高锰酸钾加热分解制造的氧气,分别进行测量。只有对以上三种方法制造的氧气,测得的密度都一样,才算得到了可靠的结果。
氢气和氧气都测准了,但是测量氮气的时候出了问题。
空气是氧气和氮气组成的,这在18世纪就已经搞清楚了。瑞利把空气通过烧得红热的装满钢屑的管子,这时氧气会与铜化合,生成氧化铜,剩下的就是氮气了。测量这种氨气的密度,结果是1.2572克每升。
瑞利又把氧气通过浓氨水,得到氧气和氨气的混合气。把混合气通过赤热的氧化钢管,氨气与氧气反应,生成水和氮气。测量这种氮气的密度,结果是1.2508克每升。
奇怪!两个结果对不起来,相差0.0064克每升。是不是实验出了差错呢?瑞利又重复做了好几次,结果还是一样。为什么两种不同来源的氮气,密度会不一样呢?这中间一定有什么奥秘。于是,瑞利给《自然》杂志写了上面那封信,请大家一同来解答这个难题。可是一封回信也没收到。
这次是化学家来帮忙了
怎么办?一个真正的科学家是不会轻易放过实验中出现的反常现象的。问题得不到解答,瑞利就继续把实验做下去。他用各种不同的方法来制造氮气,再仔细地测量密度。
他改用赤热的铁屑去除掉空气中的氧气,又用新制成的氢氧化亚铁去除掉空气中的氧气。用这两种方法由空气中制得的氮气,和用赤热的铜屑除掉空气中的氧气而制得的氮气一样,密度仍然是每升1.2572克。
瑞利用加热亚硝酸铰的方法制造氮气,用赤热的铁屑还原一氧化氮和笑气(氧化亚氮)制造氮气,用次溴酸钠分解尿素制造氮气。结果是,这些化合物分解出来的氮气,密度和从氨气分解出来的氮气的密度一样,都是每升1.2508克。瑞利又埋头做了两年的实验。这些实验准确地证明了:由氮的各种化合物制成的氮气密度都一样,比由空气中分离出来的氮气小0.5%。
1894年4月19日,瑞利在英国皇家学会上作了报告,详细地介绍了他的实验结果。报告完了,化学家拉姆赛来找瑞利。拉姆赛说:"两年前,我看到您在《自然》杂志上的那封信。当时我还弄不清楚,为什么氮气会有两种密度。现在明白了。我相信,空气中的氮气一定含有较重的杂质,一种未知的气体。如果您同意的话,我愿意把这个实验继续做下去。"
瑞利非常高兴拉姆赛能跟他合作来研究这个问题。于是,物理学家和化学家又一次共同解决科学上的难题了。
在这次会上,还有一位物理学家杜瓦向瑞利提供了一个重要的线索:英国的科学老前辈卡文迪许曾经做过一个实验,他也认为从空气中取得的氮气中含有杂质。
瑞利一听说这些情况,高兴得几乎要跳起来,他的实验室就是以卡文迪许命名的。在剑桥大学,卡文迪许在100多年前的科学实验记录和资料,都保存得非常好。
瑞利回去以后,立刻查阅古老的技术档案。果然,卡文迪许在1785年做过一个实验。瑞利看了他的实验记录,感到非常惊讶。卡文迪许是个什么人呢?他做了一个什么样的实验呢?
科学怪人和小气泡
18世纪末,英国伦敦住着一位怪人,他就是卡文迪许。卡文迪许一辈子没有结婚,因为他一见到妇女就说不出话来。他很少出门,他一出来,就会有一群小孩子跟在他的马车后面跑,街上的人也要指指点点,议论纷纷。因为他的穿戴还是他祖父时代的式样,古怪得很。
卡文迪许是个贵族,很有钱,却不喜欢交际。他出门只去两个地方,一是英国皇家学会的科学报告会,他是皇家学会的会员;二是每周一次的科学家晚会。他的钱都用来买科学仪器和图书。他在自己家中建立了实验室和图书馆。随便什么人都可以去他的图书馆借书,只是要办理个借阅手续,按时归还。卡文迪许自己拿书看,也要写一张借条,上面写着:"某月某日,卡文迪许借到某书一册。"
卡文迪许整天躲在自己的实验室里做实验。所有的实验,他都做了详细记录,但是很少把他的科研成果整理出来发表。1810年,卡文迪许去世了。过了50年,他的实验记录才由物理学家麦克斯韦整理发表。每个科学家看了他的工作都大为敬佩,原来后辈科学家做的许多实验,卡文迪许早就做过了。化学家知道了卡文迪许不仅研究了空气的组成,还第一个把水分解为氢气和氧气,并测定了两者的化合体积是2:1。物理学家知道了是卡文迪许第一个计算出地球的质量。静电作用力跟电荷的大小成正比,跟距离的平方成反比,这个定律卡文迪许比库仑测定的还要早,还要准确。但是物理学课本上还是把这个定律叫做库仑定律,因为卡文迪许没有公开发表他的发现。
瑞利在英国皇家学会1784年和1785年两年的年报中,找到了卡文迪许的论文,题目是《关于空气的实验》。要读懂100多年前的科学论文,需要有一点历史的知识。瑞利知道在上一个世纪氮气刚刚发现的时候,人们管它叫"浊气"。卡文迪许在论文中讲到的"浊气"就是氮气,这正是他感兴趣的问题。
卡文迪许把两只酒杯装满水银,又把一根U形玻璃弯管的两端分别插人到两只酒杯的水银中,再把起电器的两根导线分别通到两杯水银里。摇动起电器,圆玻璃板和毛皮不断地摩擦,摩擦生的电通过导线,积累在水银杯里。过了一段时间,玻璃弯管内电火花就一闪,同时出现红色的烟雾,这是管内空气中的氧气和氮气有一小部分化合生成的二氧化氮。卡文迪许将苛性钠(氢氧化钠)溶液滴到玻璃管中,红色消失了:二氧化氮被苛性钠溶液吸收了。这时候弯管内的气体体积就缩小了一些。卡文迪许和他的仆人轮流不停地摇着起电器,让玻璃管内不断地放电。最后,空气中的氧气全都与氮气化合了,而生成的二氧化氮又都被苛性钠溶液吸收了。玻璃管中气体的体积缩小到一定程度,就不再缩小了。这时候,卡文迪许向玻璃管内送进一些氧气,再开始放电。新加人的氧气又与剩余气体化合,体积又缩小了一些。这个实验,卡文迪许和他的仆人轮流不停的摇着起电器,一连做了三个星期。最后,弯玻璃管中只剩下一个很小的小气泡,这个小气泡很顽固,无论怎样放电,它也不肯跟氧气化合。这个小气泡也不可能是剩余的氧气。因为最后,卡文迪许在玻璃管中加入了一点"硫肝"(草木灰的浸出液与硫磺共煮得到的肝脏色溶液,主要成分是多硫化钾),把多余的氧吸收掉了。
卡文迪许的实验记录得十分详细。他写道:"在弯玻璃管里剩下来一个小气泡,这是由于某种特殊原因不与氧气化合而剩下来的浊气。它不像普通的浊气,而是另一种浊气,因为什么样的电火花都不能使它与氧气化合。"最后,卡文迪许作出结论:"空气中的浊气不是单一的物质,还混有一种不与氧气化合的浊气,总量不超过全部空气的1/120。""啊!原来是这样!"瑞利十分激动。
瑞利立刻把这情况告诉了拉姆赛。并且立刻在他那个以卡文迪许命名的实验室中,重新做109年前卡文迪许做过的实验了。拉姆赛得到很大的启发,也在自己的实验室中继续进行研究。
他们决心学习那位科学怪人卡文迪许的精神,各自关在自己的实验室里,不把空气中的这种杂质——卡文迪许的小气泡取出来,就不出实验室的门。为了互通情报,他们靠邮递员经常交换实验结果。
重找小气泡
问题似乎清楚了,空气中的氮气中还有未知的气体,也就是卡文迪许的那个小气泡。可以预料,这种未知气体极不活泼,密度比氮气大。但是要证实这个预料,必需得到这个小气泡,才能研究它的性质,测定它的密度。
瑞利做实验要比卡文迪许容易多了,因为时代不同了。这时候已经发明了能产生高电压的振荡线圈,所以瑞利不必像卡文迪许那样去摇动起电器,摇了三个星期才得到一个很小的小气泡。
为了得到更多的那种小气泡,瑞利用一个大圆底烧瓶代替玻璃弯管,倒立在碱水槽里,烧瓶内通人两根金属导线,其尖端相距只有几厘米。通上高压电,两根金属导线的尖端之间就会连续发生电火花,使瓶中空气里的氧气和氮气化合成二氧化氮。另外还有一根玻璃管通到瓶内。通过这根玻璃管,可以喷人苛性钠溶液来快速吸收掉生成的二氧化氮,也可以往瓶内送人氧气和补充新的空气。
用这个装置,瑞利终于得到一个较大的气泡。这个气泡在电火花下也不跟氧气发生作用。为了除掉气泡中可能有的氧气,他又让它通过一根烧得赤热的装有铜屑的瓷管。这样,氧气就会跟铜反应而被除掉了。
尽管装置有了改进,为了得到足够供实验用的气体,瑞利也干了好几个月。在这段时间里,他不断地把自己的工作情况写信告诉拉姆赛,同时也经常接到拉姆赛的来信。
拉姆赛用的是另一种方法。他发现氮气和赤热的镁屑能发生化学反应生成氮化镁。他使已经除去水汽、二氧化碳和氧气的空气通过装有赤热的镁屑的瓷管。结果,大部分气体跟镁化合了,只剩下一小部分气体。他把剩下的气体再一次通过赤热的镁屑,气体的体积又缩小了一些。在第三次通过赤热的镁屑之后,拉姆赛把剩下的气体拿出来测定它的密度。普通氮气的密度是氢气的14倍,而这种剩下的气体,密度却是氢气的14.88倍,果然是一种比氮气重的气体。
拉姆赛并没有满足这个初步成绩。他把这剩下的气体一次又一次地通过装有赤热的镁屑的瓷管。结果是每通过一次,气体的体积总要缩小一点,密度总要增大一点,变成氢气的17倍,18倍,19倍;最后体积不再缩小了,密度增大到氢气的20倍也不再变了。拉姆赛计算了一下,剩下的气体的体积是原来空气中的氮气的体积的1/80。
卡文迪许的小气泡得到了。这是一种什么气体呢?这又要用光谱分析了。
拉姆赛把这种气体装在密闭的玻璃管里,玻璃管的两端封有两根白金丝做的电极,这就是气体放电管。通上了高压电,玻璃管中的气体就闪闪发光。用分光镜检查,发现光谱中有橙色和绿色的话线。这是已知的元素所没有的话线,表明这种剩下的气体的确是一种新的气体元素。
瑞利在两年前提出的问题,现在完全弄清楚了。用氮的化合物制成的氮气,原来是纯粹的氮气,它的密度是1.2508克每升。由空气中得到的氮气不是纯粹的,里面混有少量密度为1.9086克每升的未知的气体,因而这种不纯的氮气的密度是1.2572克每升。就这样,物理学家和化学家合作,又取得了惊人的发现。
他们已经知道,这种新气体既不跟氧化合,也不跟镁化合。他们正是利用新气体的这种性质,使它跟氮气分开的。那么它跟哪些物质化合呢?他们做了许多试验,结果表明,这种新气体跟氢,跟氯,跟氟,跟各种金属,跟碳,跟硫,都不发生化学反应。不管加温也好,加压也好,用电火花也好,用铂黑作触媒也好,它还是不跟任何物质起反应。根据这个性质,科学家给新气体元素起了个名字叫做argon(希腊文"懒惰"的意思)——我国译作"氩"。
第三位小数的胜利
1894年8月7日,拉姆赛给瑞利去了一封信,建议俩人一起宣布他们的新发现。经过几天准备,8月13日,他们来到了英国的科学城牛津。那时候,牛津正在召开自然科学家代表大会,各门科学家共聚一堂。他们申请出席作临时报告,要宣布一个重要的新发现。
瑞利走上讲台,宣布他和拉姆赛发现了一种新元素。他说:"这元素到处都有,从四面八方围绕着我们,和氧气氮气一样,都是空气的组成。"他还说:"在每立方米空气中大约有15克这种气体。计算下来,在我们开会的大厅中就有几十公斤这种气体。"
他们的报告震惊了到会的全体科学家。这是可能的吗?长期以来,人们不仅知道空气是由氧气和氮气组成的,而且还精确地测定了它们的组成比例。空气中含有0.03%的碳酸气,也早测出来了。难道还有含量高达1%的新气体,竟长期未被发现?真是不可思议!大家议论纷纷,有的赞赏,有的怀疑。
这个问题太重要了,于是决定半年以后召开关于氩的专门讨论会。
1895年1月31日,伦敦大学的讲堂里坐满了科学家。瑞利和拉姆赛走上讲台,详细报告了他们发现氩气的经过、实验装置和氩气的性质。瑞利用土烟嘴当场证明了氩气的存在,大家就更加惊奇了。
瑞利做了一根夹层的套管,套管的外层是一根粗玻璃管,内层是8个土烟嘴接在一起,用胶粘成的一条细管子。土烟嘴就是英国人常用的那一种,表面没有上釉,因而管壁上有无数的细孔。套管夹层的两头,都用火漆封死。另外有一根管子一头通进夹层,另一头跟抽气泵相连接,可以把夹层内的气体抽掉。瑞利往土烟嘴管的一头通人从空气中得到的氮气,气体由另一头出来的时候就少了许多。原来一部分气体穿过土烟嘴管壁的小孔,跑进夹层,被抽气泵抽走了。瑞利取了1立方厘米剩下来的气体。当着大家的面称了一下,结果比1立方厘米普通的氮气重了12%~15%。这个实验说明什么问题呢?为什么空气中的氮气通过了土烟管会变重呢?
解释只有一个,空气中的氮气不是纯粹的气体,而是氮气和某种更重的气体的混合物。在通过土烟管的时候,虽然它们都会透过土烟管的细孔,被抽掉一部分,但是轻的气体透过得快,重的气体透过得慢,结果在剩下的气体中,氮气占的比例减小了,氩气占的比例则大大增加了。
物理学家瑞利当众用物理方法——扩散法,也就是他在前几个月中研究成功的新方法,分离出空气中的氩气,证明了这种新气体的存在。接着拉姆赛也走上了讲台,把他们用不同方法制成的氮气,当众做了各种表演实验。
在事实面前,大会的参加者公认了他们的新发现。氩气的发现是从1.2508和1.2572之间的差数开始的。小数点后边第三位数字的差别引出了氩气。
人们不禁想起100多年前的卡文迪许,他实际上已经捉住了氩气——一个小气泡,并且指出这个小气泡不跟氧气化合。但是他那时候还没有称量千分之几克的精密天平,也没有光谱分析法,他只好把这个小气泡放走了,没有能够真正的发现氩气。19世纪末氩气的发现是精密度的胜利,是天平的胜利,是小数点后边第三位数字的胜利。
从天上来到人间
氩气的存在得到了公认。但是这仅仅是开始,拉姆赛还在继续研究氩气的各种性质。1895年2月1日早晨,他接到伦敦化学教授亨利•梅尔斯的一封来信。信中说:"不知道您是否试验过氩气跟金属铀的反应?如果没有的话,我认为您应该试一试。1888-1890年间,美国地质学家希莱布兰德曾经把钇铀矿放在硫酸中加热,结果冒出来许多气泡。这种气体既不能自燃,又不能助燃。希莱布兰德当时认为这是氮气。不过也可能是氩气。我认为应该检查一下,说不定钇铀矿中含有铀和的氩的化合物!"
拉姆赛把手头的实验告了一个段落以后,立刻根据亨利•梅尔斯的提示进行研究。他派人找遍了伦敦的化学药品商店,才买到了1克钇铀矿。
一个新的实验开始了。拉姆赛的助手特莱凡斯把钇铀矿放在硫酸中加热,气泡冒出来了,收集到了几立方厘米的气体。拉姆赛和特莱凡斯又用了整整4天的工夫,把气体中能跟其他物质化合的杂质除掉。实际上杂质很少,大部分是跟任何物质都不起反应的气体。气体装进前面讲过的那种放电管中。通上高压电,气体放出光来。
拉姆赛用分光镜作检查的时候,本来以为会看到氩的谱线,但是出乎意料之外,他看到的是一条黄线和几条微弱的其他颜色的亮线。
拉姆赛想,可能是白金电极上沾了点钠盐,或是分光镜出了毛病。他仔细作了检查,并没有这一类问题。那么就应该检查一下,这条黄线是不是与销的谱线重合了。拉姆赛于是故意在放电管内放进去一点钠,重新封好再观察它的光谱。结果光谱中出现了钠的谱线,但是以前看到的黄线还在老位置上,在钠的谱线旁边。毫无疑问,这条黄线不是钠的,而是属于某一种别的物质的。这是一种什么物质呢?
拉姆赛把他所知道的各种物质的光谱都重新回忆了一遍,没有一种跟它相似。经过长久的思索,他记起了詹森和罗克耶在27年前发现的太阳上的氦。氦的光谱不就是黄线吗!如果这条黄线跟那条黄线重合的话,那么钇铀矿中放出来的气体就既不是氮,也不是氩,而是太阳元素——氦了。
太阳元素就这样容易地找到了?这个结论是不是太大胆了?拉姆赛是十分严谨的科学家,他决定请他的朋友,当时英国最好的光谱学专家克鲁克斯(他曾经用光谱法发现了元素铊)帮忙。他派人把放电管送到克鲁克斯那里,并且附了一封信。他没有肯定说这是氦,而是说他找到一种新气体,建议叫做krypton(希腊文"隐藏"的意思)——我国译作"氪",请克鲁克斯仔细确定一下新气体的谱线的位置。
1895年3月23日早晨,拉姆赛正在自己实验室中研究这新气体的光谱,邮递员送来了一份电报,里面写着:"氢——这是氦,请过来看。克鲁克斯。"
太阳元素真的由天上来到人间了!
拉姆赛立刻来到克鲁克斯那里,用克鲁克斯的精密的光谱仪仔细观察。的确,这气体正是氦。当天,拉姆赛给法国科学院院长贝特罗拍了个电报,通知他说:氦在地球上发现了。
真是无巧不成书,就像詹森和罗克耶几乎同时发现太阳上的氦一样。在拉姆赛发现氦的两个星期以后,瑞典青年化学家兰格列也在党铀矿中找到了氦。他的老师克利夫把他的发现也报告给同一个贝特罗院长,发信的日期是1895年4月8日。
新任务和新问题
拉姆赛是世界上第一个拿到了太阳元素的化学家。当然,他立刻开始研究氦的性质,用氦作了各种各样的实验。
太阳上的氦是没法拿来称的,天文学家们猜想,氦是一种很轻的气体。拉姆赛第一个称出了氦的密度,证明天文学家的预测是对的。氦果然是很轻的气体,空气比它几乎重6.5倍。只有氢比氦还轻,其他气体都比氦重。
拉姆赛试验了许多物质,看看它们会不会跟氦发生反应。结果证明,氦和氩一样,不跟任何物质化合。它们都是"惰性气体"。能不能在空气中找到氦呢?氦既然是不跟任何物质化合的气体,它必然会跑到空气中去。拉姆赛开始了新的搜索——在空气中寻找氦。
如果空气中真有氦的话,只要把空气中的其他气体都去掉,把氧气去掉,把氮气去掉,把新发现的氩气也去掉,剩下的就是氦气了。这工作的头两步——除去氧气和氮气,拉姆赛在寻找氩气的时候已经作过了。只要把空气通过装有赤热铜屑的磁管,空气中的氧气就会跟铜反应,生成氧化铜而被除掉,剩下的就是氮气和氩气的混合气,里面可能有氦气。空气中的氮气通过装有赤热镁屑的磁管,氮气就会跟镁反应,生成氨化镁而被除掉,剩下的就是拉姆赛和瑞利共同找到的氩气了。他们找到的氩气中会不会就有氦气呢?氦气跟赤热的铜和镁也不起反应的,空气中如果有氦气的话,它必然会混在氩气中。怎样把氦气和氩气分开呢?要是能找到一种只跟氩气化合而不与氦气化合的物质,问题就解决了。可惜就是找不到那样一种物质。因为两者都不跟任何物质化合。这就是说,分离氧气和氮气的那种方法,不能用来分离氩气和氦气。
看来问题是难以解决了。拉姆赛并没有灰心,他想到了化学家分离酒精和水的方法。酒精的沸点是78摄氏度,比水的沸点低,所以蒸发得比水快。化学家利用了这一点,把混有水的酒精放在蒸馏瓶里加热:一开始出来的一批蒸气是纯酒精的蒸气,后来的一批蒸气是酒精和水的混合蒸气,最后一批蒸气就是纯粹的水蒸气了。只要把头一批蒸气冷却,就可以得到纯粹的酒精。这个方法叫做分馏法。
拉姆赛决定用分馏法把空气中的氩气和氦气分开。但是酒精和水是液体,而氦气和氩气是气体。要用分馏法使它们分离,首先就要把它们变成液体,或者说,首先要把空气变成液体。拉姆赛想,把空气变成液体,再让它慢慢蒸发,那么组成空气的各种气体——氮气、氧气、氩气、氦气(如果有的话),在蒸发的时候就会有先有后,先是最容易蒸发的,然后是比较难蒸发的。要使空气变成液体可不是容易的事,必须冷到零下192摄氏度。在地球上,连北极也没有这样冷,必须有一台制造寒冷的机器——制冷机。
在今天,使空气变成液体是一件很平常的事。但是在当时,全世界只有几个实验室能制造液态空气。当时在英国,研究这方面问题的专家就是那位向瑞利建议查卡文迪许实验资料的物理学家——杜瓦。杜瓦还发明了保存液态空气的容器——杜瓦瓶。这是一个夹层的玻璃瓶,内壁镀银,夹层抽成了真空。真空不能传热,外面的热传不到瓶内去,因而瓶内的液态空气可以保存比较长的时间。后来人们想,瓶外的热既然不能传进去,瓶内的热当然也不能传出来,于是把杜瓦瓶改造成保存开水的热水瓶。我们常用的热水瓶和保存液态空气的杜瓦瓶,实际上是同一种容器。
杜瓦有个缺点,思想非常保守。他的实验室里有把空气变成液体的机器,虽然方法既复杂又困难,他还是把他的发明保密。不仅如此,连制成的液态空气,他也不肯轻易给人。可是拉姆赛的工作需要很多的液态空气,这怎么办呢?
制造冷
说来也巧,正当拉姆赛急需液态空气而又得不到的时候,一种既简单又方便的制冷机发明了。这种制冷机是两个人各自在自己的国家里发明的,但是运用的原理恰好一样。他们是德国的林德和英国的汉普松。制冷机的原理是这样的:空气受到强烈的压缩,就会发热。让发热的压缩空气冷却下来,再突然让它膨胀,它就要吸收很多的热,而迅速变冷。林德和汉普松都利用了这个物理原理,制成了制冷机。
他们把空气送进机器,强力的泵把空气压缩在细管子里,然后让压缩的空气通过一个小孔,喷进细管子外面的空室,让它迅速膨胀变冷。用这变冷了的空气来冷却细管子里后进来的压缩空气。这部分冷却过的压缩空气,膨胀后就变得更冷。这样第二批冷却第三批,第三批冷却第四批,越来越冷,最后温度下降到零下192摄氏度。这时候,空气就变成液体了。液态空气积存在空室里,只要打开龙头,就像自来水一样放出来了。
英国的发明家汉普松和拉姆赛都住在伦敦。他知道拉姆赛需要用液态空气进行重要的研究,就把他的新机器制得的第一批液态空气750立方厘米,装在杜瓦瓶中送给了拉姆赛。
意外的收获
"液态空气来了!""液态空气来了!"在拉姆赛实验室中工作的年轻人奔走相告。他们放下手头的工作,都来看这从来没见过的东西——液态空气,更想看看拉姆赛怎样从液态空气中提取氦。杜瓦瓶中的液态空气像清水一样,慢慢地冒着小气泡。瓶子一摇动,气泡就增多,发出咝咝的声音。在找氦之前,拉姆赛用液态空气,向他的学生们做了好几个奇妙的实验。一个小橡皮球放进液态空气里,再拿出来扔在地上。橡皮球没有跳起来,而是摔碎了!原来橡皮在液态空气的温度下失去了弹性,变得像玻璃一样脆了。
拉姆赛在试管里装了小半管水银,中间插一根铁棍,把试管放在液态空气中。水银冻成了固体,拿着铁棍一拔,就连水银一起拔了出来。拉姆赛用这把水银锤子在墙上钉了一个钉子,原来水银冻得比铁还硬。拉姆赛又把一块面包放进液态空气里。他让大家把窗帘都放下来。拿出面包来一看,这块冻硬的面包在漆黑的房间里发出天蓝色的光辉。
拉姆赛一个又一个地做着实验,各种常见的东西放进了液态空气,都希奇古怪的变了样。年轻人不时发出惊叹声。但是他们也越来越着急了:宝贵的液态空气越来越少了,还找不找氦呢?
拉姆赛停止了实验,让大家都去吃午饭。他自己也离开了实验室,让杜瓦瓶里的液态空气继续蒸发。
大约过了一个半钟头,拉姆赛才回到实验室。杜瓦瓶里的液态空气剩下不多了,但是他一点也不可惜。他认为:氦气比氧气和氮气蒸发得慢,多耽搁一些时间,可以让氧气和氮气先跑掉,氦气就会剩在杜瓦瓶里。
等到液态空气只剩下大约10立方厘米的时候,拉姆赛不让它们白白地跑掉了。他把最后这一点液态空气蒸发成的气体仔细收集起来。他认为,最后的这部分气体中,一定会有氦气。
为了把这部分气体中的剩余的氧气和氮气除掉,拉姆赛让气体通过装有赤热铜屑和赤热镁屑的瓷管,最后得到几个大气泡。气泡被封在放电管中,通上高压电,发光了。拉姆赛开始研究它的光谱。他看到了橙色和绿色的谱线,这是氩的谱线,没有错。但是令人失望的是,预料的那条黄色的氦的话线没有出现。没有氦!
看来拉姆赛估计错了。一个可能是空气中根本就没有氦气;另一个可能是氦气蒸发得很快,甚至比氧气和氮气蒸发得还快,它早就逃走了。
但是拉姆赛并不懊悔,他仔细观察光谱,发现了两条明亮的新谱线,一条是黄的,一条是绿的。这两条谱线跟已知物质的谱线都不重合。显然,放电管中除了氩气以外,还有一种新的气体。拉姆赛在研究亿铀矿中的气体的时候,曾经把氦叫做氪。这一回,他把找氦的时候发现的新气体元素,叫做了"氪"。就这样,拉姆赛想在空气中找氦,氦没有找着,却发现了氪。这真是意外的发现。这是1898年5月24日的事。
在空气中找到了氦
这一回没有找到氦,拉姆赛并没有失去信心。他已经储存了15升由空气中提取的氨气,他相信氦气就混在这些氩气中。由上面实验的结果可以预料,氦是非常容易蒸发的。他和他的年轻助手特莱凡斯设计了新的实验方案。
过了几天,在6月初,汉普松又送来了液态空气,这一回有好几升。新的实验开始了,他们把一端是球形的玻璃管浸在装有液态空气的杜瓦瓶里,然后把那15升由空气中提取的氩气,慢慢送到玻璃管里。在液态空气的温度下,氩气凝成了液体,积在球中大约有13~14立方厘米。
最后,他们关闭了玻璃管上的活塞。这时候,玻璃管仍旧浸在液态空气里。过了几分钟,他们把玻璃管中的未液化的气体抽了出来,装进了放电管。通电以后,这气体在放电管中发出美丽的红光。用光谱仪检查,拉姆赛和特莱凡斯发现了几条明亮的橙红色的谱线。查对一下,这又是一种新的气体。他们给这新气体元素起名字叫做neon(希腊文"新"的意思)——我国译作"氖"。再仔细检查一下,他们在光谱中找到了那条黄线——氦的谱线,位置一点也不差。但是这条黄线很暗淡,说明氦气很少。氦又被找到了。这个曾经是很神秘的太阳元素,原来在我们周围的空气中就有。
几年以后,拉姆赛在一次公开讲演中谈到氦的发现经过,他说:"寻找氦,使我想到了老教授找眼镜的笑话。他拼命的在地下找,桌子上找,报纸底下找,找来找去,原来眼镜就搁在自己的额角上。氦也被找了很久,而它却就在空气里。"
空气里的新家族
在上面的实验里,15升由空气中提取的氩气被液态空气冻成了液体。拉姆赛和特莱凡斯首先抽出了液体上面没有液化的气体,发现了氖,还有氦。接着,他们让液体不断蒸发,并且一份一份地抽出蒸发的气体,检查它们的光谱。开头,收集的气体大部分是氩,随后,就是不久前发现的氪。而把最后一点点气体装进放电管,通上电却发出了美丽的蓝光,又一种新的气体元素被发现了。这是1898年7月12日的事。这种发蓝光的新的气体元素起名叫做xenon(希腊文"陌生"的意思)——我国译作"氙"。
就这样,拉姆赛在得到液态空气以后,不到一个半月,就在空气中又发现了三种新的气体元素——氟、氖和氙。
现在让我们来回顾一下这段历史:在瑞利和拉姆赛在空气中发现氩之前,科学家都认为空气是由氧和氮组成的。接着,拉姆赛和特莱凡斯又证明了先前发现的氩也不是纯的气体,它里面还混杂着氦、氖、所氪和氙。
为了研究这些气体的性质,拉姆赛和特莱凡斯蒸馏了大量的液态空气,他们得到了纯粹的氩气,纯粹的氪气和纯粹的氙气。但是氖气和氦气总是在一起,没法把它们分开,因为在液态空气的温度下,它们都不会变成液体。
需要比液态空气更低的温度,才有可能使氖气和氦气变成液体。这就需要用液态的氢。液态空气的沸点是零下192摄氏度,而液态氢气的沸点是零下253摄氏度。
可是哪里有液态的氢呢?前面提到的那位杜瓦,在1898年第一回制得了液态氢。可是他连液态空气都不肯给别人,更不用说液态氢了。怎么办呢?
特莱凡斯决心自己装一台机器制造液态氢。经过一番努力,液态氢真的得到了!头一批产品——100立方厘米的液态氢,立刻用来分离氖气和氦气。
氦气和氖气的混合气体送进了浸在液态氢中的玻璃小球,氖气不仅变成液体,而且立刻凝结成了固体,氦气却仍然是气体。于是,最难分离的氦气和氖气也分开了。
拉姆赛和特莱凡斯证明:在1升空气中大约有10立方厘米的氩气,18立方毫米的氖气,5立方毫米的氦气,1立方毫米的氪气,氙气最少,只有0.1立方毫米。
为了详细地研究这些气体的性质,他们先后用了3年时间。他们测定了每种气体的密度,结果是按着氦、氖、氩、氪、氙的次序,一个比一个大。他们做了许多化学实验,结果证明,这一群气体,不仅氩气和氦气,就是后发现的氖气、氢气和氙气,也不肯跟任何物质发生化学反应。它们极不活泼,所以人们把它们叫做"惰性气体"。在门捷列夫周期表上,氦、氖、氩、氪和氙形成单独的一族——零族元素。
在拉姆赛的时代,从空气中取得一点点纯粹的惰性气体,要花很大气力。所以人们也把它们叫做"贵气体",或者"稀有气体"。现在就不同了,世界各国都建立了大的气体工厂,这些工厂的原料就是空气。空气在工厂中先变成液体,再用分馏法来分离,制成纯粹的氮气、氧气和氩气,它们都装在钢瓶里出售。氦气、氖气、氪气和氙气也提纯了,装在特制的容器里,供给生产技术部门和科学研究单位使用。
这些"稀有气体",现在都不是很难得到的东西,价钱也大大降低了,"贵气体"这个名字,现在不大有人用了。1962年,人工合成了氙跟铂、氟的化合物,以后又陆续合成了不少红的化合物和氙的化合物,如氟化氪、氯化氙、氧化氙等等。"惰性气体"这个名字,看来也不大正确了,但是由于习惯,现在仍然使用。
到处找氦
在历史上,氦被人们发现三次了:第一次在太阳上,第二次在钇铀矿里,第三次在空气里。这引起了当时科学家们的莫大兴趣。既然空气里能找到氦,水里会不会有呢?既然在钇铀矿里有氦,别的矿物和岩石中会不会有呢?于是大家纷纷去找氦,当然同时也去找其他惰性气体。
化学家们检查了雨水、河水、海水、井水和各种矿泉水。他们发现水中也溶解有氦气和其他惰性气体,不过含量比空气中还少。只有矿泉水是例外,某些矿泉水中溶解有相当多的氦气。德国物理学家基索姆在一处山泉水中,拉姆赛在一处矿泉水中,瑞利在一个疗养院的地下水中,都发现了较多的氦气。
还有一些人在动植物体中去找氦,结果没有找到。有人还从各种鱼类的鱼鳔中取出气体来研究,发现鱼鳔中的气体与空气没什么两样。在矿物和岩石中找氦的成绩比较大。其中含氦气最多的是锡兰岛出产的方钍矿,1千克方钍矿加热后,能放出10升氦气。在研究了很多种矿石之后,拉姆赛有一个发现,那就是,含有铀和钍的矿石中总是有氦气,而不含铀和钍的矿石中就没有氦气。
真是怪事!氦是惰性气体,它不会跟铀和钍化合,这一点拉姆赛早已试验过了。但是在矿物中,氦为什么总是跟铀和钍一起出现呢?氦跟铀和钍有什么关系呢?
看不见的射线
正当拉姆赛在英国热心地寻找空气中的新气体的时候,法国的科学家们也作出了惊人的新发现。在拉姆赛由钇铀矿中发现氦的第二年,1896年3月,法国巴黎的物理学家贝克勒尔也研究了铀的各种化合物和铀的矿石,但是他找到的不是氦,而是发现铀在不停地发出看不见的射线,也就是说,铀有放射性。
铀是1789年德国化学家克拉普罗斯发现的金属元素,它的外表像银,化学性质像钨。将近100年来,人们都认为铀和其他金属一样,是一种普通的元素。贝克勒尔的实验告诉我们:铀和一般元素不一样,它发出的看不见的射线,可以隔着黑纸使照相底片感光。这可是以前谁也不知道的事。是不是还有一些别的元素像铀一样,也能够发出看不见的射线呢?这吸引了不少科学家去研究。
1898年,拉姆赛和他的助手特莱凡斯一起发现了空气中的氦、氖、氪和氙。就在这同一年里,一位法国女科学家玛丽•居里不仅发现了钍也有放射性,而且在沥青铀矿里还发现了两种放射性更强的新的放射性元素——钋和镭。
1899年,另一位法国化学家德比尔纳发现了又一种新的放射性元素——锕。
几年之内,新发现了一批放射性元素——钋、镭、锕。对这些放射性元素的研究,又引起了新的发现。
居里夫妇在研究镭的时候发现:镭和空气接触以后,镭拿走了,可是留下的空气还有放射性,好像被镭传染了似的。1900年,德国科学家多恩研究了这个奇怪的现象,发现原来是镭在连续不断地放出一种气体,这种气体也有放射性,这种放射性气体被叫做"镭射气"。
差不多在同时,英国物理学家卢瑟福发现钍也会发出一种放射性气体,后来又发现锕也会发出一种放射性气体。这两种气体分别被叫做"钍射气"和"锕射气"。这些放射性气体又是什么样的物质呢?
镭射气
1903年,卢瑟福和另一位化学家索地一起,详细地研究了镭射气。最早,科学家利用使照相底片感光的办法来检查物质的放射性,后来就发明了另一种方法——利用荧光物质。有一些矿石(如硅锌矿)和一些化合物(如硫化锌),碰到了看不见的射线就会闪烁发光。所以,如果硅锌矿或硫化锌在闪烁发光,那就说明一定有放射性物质存在。卢瑟福和索地在一根两端有活塞的玻璃管里装上一些硅锌矿粒。他们把吹过镭的表面的空气通到这根玻璃管里去,然后关闭玻璃管两端的活塞。把玻璃管拿进黑屋子里去,就看到硅锌矿在闪闪发光,亮得可以照清楚报纸上的大标题。只要把玻璃管中的气体抽掉,硅锌矿立刻不再发光了。这说明被空气带到玻璃管中的镭射气是放射性气体。
为了研究这种气体,卢瑟福和索地在这玻璃管后面接上一个U形管,U形管后面又接上一个圆底烧瓶,圆底烧瓶的壁上涂有硫化锌。他们把U形玻璃管浸到液态空气里,然后把含有镭射气的空气不断吹进去。这时候,装有硅锌矿粒的管子闪闪发光,而涂有硫化锌的烧瓶并不发光。不过,只要把U形管从液态空气中拿出来,过了一会,烧瓶壁上的硫化锌也开始发光了。这个实验说明:液态空气可以使镭射气变成液体,因而流不到涂硫化锌的烧瓶里去。
更有趣的是把镭射气封在装有硅锌矿粒的玻璃管里,一开始发光很强,几天以后,光就减弱了,过了一个月左右,就完全不发光了。看来镭射气会慢慢地消失。
镭射气消失了,它变成了什么呢?
氦的诞生
为了解决镭射气变成了什么的问题,卢瑟福和索地决定去请教研究气体的专家拉姆赛。卢瑟福和索地把尽可能多的用液态空气冻下来的镭射气封在管子里。索地带上这管镭射气,就去找拉姆赛。拉姆赛热情地接待了索地,立刻和他一起研究镭射气。这是1903年春天的事。镭射气被充到放电管中,通电后发出淡蓝色的光辉。拉姆赛和索地用分光镜观察镭射气的光谱。他们发现了三条新的谱线。镭射气原来是一种新的气体元素。这时候,在光谱里没有看见别的谱线。两天以后,他们又检查这个充有镭射气的放电管的光谱。三条新的诺线还在老地方,只是比两大前减弱了;但是,出现了一条新的谱线,是黄色的。拉姆赛立刻认出来,这是他的老朋友——氦的谱线。放电管是封死的,外面不会有气体跑进去。结论只有一个:镭射气变成了氦。又过了两天,再把放电管通电。这时候,管子发出的已经是黄光,而不是淡蓝色的光了。氦的谱线更强了,而镭射气的谱线更弱了。氦在拉姆赛和索地的眼前诞生了!
人们第四次发现了氦。
接下去,拉姆赛仔细地研究了镭射气的性质,证明它和氦、氖、氩、氪、氙一样,也是惰性气体。后来给它另起一个名字叫做radon(拉丁文"射线"的意思)——我国译作"氡"。拉姆赛为了测定氡气的密度,设计了一个极为灵敏的天平,灵敏度达到0.000000005克!他称量了0.1立方毫米(仅仅有一个针眼大小)的氧气,测得它的密度是氢气的111倍,是最重的气体。科学家们用同样的方法去研究锕射气和针射气,结果和镭射气一样,这两种射气也是氡,也在不断地变成氦。
地质学家的时钟
氧是放射性气体元素,它不断地产生氦气。铀是不产生射气的,它会不会也不断地产生氦气呢?应该做一下试验。索地把一些含铀的物质放在大烧瓶里,把烧瓶里的空气抽掉,把瓶口封死。过了一年,索地打开烧瓶,取出瓶内的气体作光谱分析。果然,气体的光谱中出现了氦的诺线。虽然氦气的量不多,但是证明了铀也在产生氦气。原来,从放射性元素放出来的看不见的射线,可以分为α、β和γ三种射线。其中的α射线,实际上就是无数的失掉了电子的氦原子。
为什么铀矿和钍矿中会有氦气呢?这些氦气正是放射性元素铀和钍产生的。索地又在大烧瓶中装了1000克铀。一年之后,他从烧瓶中得到了0.1立方毫米的氦气。这个气泡只有——0.00000002克重。铀产生氦气的速度是非常慢的,一吨铀每年也只能产生0.00002克的氦气。为什么钇铀矿和其他的放射性矿物中,含有许多氦气呢?
卢瑟福研究了这个问题,产生了这样一个想法:钇铀矿里含的氦气多,说明这矿石的历史长久。每年只产生一点点氦气,经过几百万、几千万、甚至几亿年,积累起来就多了。只要我们分析一下铀矿中现在有多少氦气,还剩下多少铀,又知道铀生成氦气的速度,就可以算出这块矿石是多少年前生成的了。
这方法真是妙极了!氦成了地质学家研究矿石年龄的"时钟"。这是1904年卢瑟福提出来的。
在此以前,人们很难知道矿物和岩石的年龄有多大,因为岩石是不会自己说话的。虽然有各种各样的估计,但是都非常不可靠。利用了放射性方法,岩石自己说话了。
你要知道某一个地方的煤是什么时候生成的吗?那只要在生成那种煤的地层中找出一种放射性矿物就行了。英国物理学家斯特莱特选了一块赤铁矿,经过分析,这块赤铁矿中有铀,也有少量氦气,每1克怕就大约有20立方厘米的氦气。已经知道,每1克铀一年能产生0.0000001立方厘米的氦,那么要多少年才能生成20立方厘米的氦呢?这很容易算,要2亿年。既然这块赤铁矿是2亿年前形成的,当然,那里的煤层也是2亿年前形成的。斯特莱特用这个方法测定了许多种矿石的年龄,但是工作并不是没有困难的。氦是气体,如果岩石不很致密,有裂缝,生成的氦气就会跑掉。在这种情况下,测定的数值就不会准确了。
卢瑟福的学生波特伍德发现,铀在连续放出氦以后,最后变成没有放射性的铅。铅不是气体,不会从岩石的裂缝中跑掉。已经知道,1000克铀在一年间能生成0.00000135克铅。只要测定铀矿中铀和铅的含量各是多少,同样可以算出铀矿的年龄。这个新方法比测量氦气的方法要可靠多了。许多人用它来测量地球上各种矿物和岩石的年龄。到了1935年,英国科学家霍姆斯测出来地球上最老的岩石大约是35亿年。也就是说,地球的年龄至少有35亿年(现代测定,地球的年龄是46亿年)。
地球能比太阳年龄大吗?
在太阳系中,太阳是质量最大的中心天体。在太阳系的总质量中,太阳占了99.9%,所以,有足够强大的引力,使太阳系的其他天体都环绕着它运行。太阳又是太阳系中唯一的能够自身发光的天体,它是太阳系的光和热的主要源泉,它照亮了整个太阳系,也晒热了整个太阳系。而地球不过是绕着太阳转的一颗比较小的行星。人们用放射性方法测定出来,地球的年龄有几十亿岁了。那么太阳的年龄有多大呢?当时的科学家推算,太阳是2200万岁。真奇怪,地球竟比太阳的年龄大100多倍!这怎么可能呢?
必定有一个年龄搞错了。地球年龄的测定是相当可靠的,看来太阳的年龄可能推算错了。太阳的年龄就是不比地球大,无论如何也应该和地球相等。是不是可以把太阳的年龄改一下呢?
不行!天文学家提出了不同的意见。他们说:我们虽然不能从太阳上取一块物质来直接研究它的年龄,但是有一点是没有错的,那就是太阳在不断地发出大量的光和热,它每分钟发出多少能量是测准了的;同时,太阳的体积和质量,我们也是能够准确计算的。要说太阳的年龄像地球一样,也有几十亿年,那么,它烧的是什么燃料呢?为什么能维持这样长的时间而不熄灭呢?
在18世纪就有人算过,如果太阳是一大块煤,那要不断地发这么多的光和热,只能烧5000年。这个年龄显然太小了。后来,德国科学家赫尔姆霍茨认为,太阳发光发热是由于它不断地收缩,把位能转变成为热能。他计算出来,太阳的年龄是2200万年,还可以再发光发热1000万年。他的这个结论一直延用了半个世纪,要推翻它,必须先回答太阳烧的是什么。
太阳烧的是什么?在回答这个问题之前,我们先介绍一下科学家用氦气做实验的时候发现了什么。上面已经说过,卢瑟福和索地发现放射性物质放出的α射线,原来就是无数失去了电子的氦原子。它们由放射性物质中一粒一粒地射出来,所以又叫做α粒子。α粒子射出来的速度非常大,每秒可以达到上万公里!
卢瑟福用放射性物质放出来的高速度的α粒子去轰击各种物质。他发现原子像个小太阳系一样:中心有一个带正电的核,周围有电子绕核转圈子。
卢瑟福又想试试,把α粒子打到别的原子核里面去,会发生什么结果。他选用了镭C′(镭C′是钋的放射性同位素,它是镭蜕变而产生的)放出来的α粒子。这种α粒子速度特别大——每秒19200公里。实验的结果是:高速的α粒子打到氮的原子核里去了,同时放出来一个新粒子——质子。质子也就是氢原子核。卢瑟福在1919年,第一回用人工实现了原子核反应,同时发现了质子。
卢瑟福接下去就用α粒子对各种元素进行轰击,看看哪些元素能起反应。在试验铝的时候发现,铝被轰击以后变成了硅,同时,放出来极大量的能,比燃烧同量的煤放出的能要大700000倍!核反应能放出大量的能。太阳上是不是也在进行核反应呢?
太阳温度特别高,表面有6000摄氏度,核心能到2000摄氏万度,密度也特别大。在这样高的温度下,各种原子外层的电子都脱离了原子核,原子核以极大的速度碰来碰去,当然会发生核反应。
1938年,美国的贝特和德国的魏札克证明了太阳上烧的是氢。这不是氢和氧燃烧的化学反应,而是在高温和高速运动的条件下,氢原子核碰在一起的核反应——四个氢原子核生成一个氦原子核。这就是热核反应。
在热核反应中,1克氢全部变成氦,能放出多少热呢?据计算,这些热能使400吨冰完全变成水蒸气!而1克氢气在跟氧气化合的时候,放出来的热只能使47克冰变成水蒸气。这就是说,氢在热核反应中放出的核能,比在化学反应中放出的化学能,要多出8500000倍。
太阳的能源是在氢原子核聚变成氦原子核的过程中放出来的热核能。在这样的热核反应中,消耗的是氢核,产生的是氦核。太阳元素——氦,原来就是氢进行核燃烧后的"灰烬"。据计算,太阳上氢合成氦的热核反应,已经进行了差不多50亿年了,以后还可以继续50亿年。问题解决了,地球的年龄不比太阳大了。同时人们也弄清了太阳元素——氦的来源:在太阳上,氦是氢的热核反应生成的;在地球上,氦是放射性元素蜕变生成的。
战场上的氦
在天空中飞翔,是人类自古以来的希望。发现了氢气以后,乘坐氢气球在天空中飞来飞去,成了时髦的事情。氢气球越做越大,后来发展成为巨大的飞艇。
第一艘飞艇是德国工程师齐柏林在1900年设计的,艇身长128米,里面装有9910立方米的氢气。人们把这种飞艇叫齐柏林飞艇。1914年8月,在欧洲爆发了第一次世界大战。德国先后制造了123艘齐柏林飞艇用于战争。为了防御飞艇,英法联军用高射炮发射烧夷弹来对付它。因为氢气遇火就会燃烧爆炸,飞艇只要被烧夷弹击中,立刻就会在天空中炸毁。但是,1914年秋天,在法国北部的战场上发生了奇怪的事:一艘德国飞艇被英军的炮弹打穿了,它竟然没有着火爆炸,而是掉转头飞回去了。这真是个谜!英国军部研究了好久,也弄不清楚这艘飞艇为什么没有着火爆炸。最后,英国军部接到了化学家特莱福的来信。他写道:"德国人发明了一种取得大量氦气的方法。这次用来充齐柏林飞艇的不是氢气,而是氦气。氦气也是很轻的气体,仅比氢气重一倍,因此充氦气的飞艇的升力跟充氢气的飞艇相差不多。但是在其他方面,氦气比氢气的优点大得多。要知道,氢气很喜欢跟氧气化合,因此它很容易燃烧。氦气不与任何东西化合,也不与氧气化合,它是惰性气体。如果德国的飞艇真是充氦气的话,那么烧夷弹没把它烧毁是不足为奇的。"
特莱福的理由很使人信服,但是从什么地方得到这样多的氦气呢?一艘飞艇需要用几千立方米的氦气;要得到这么多的氦气,就需要处理几万吨的方钍矿或是别的放射性矿物,而德国是没有这些矿物的。由空气中提取吗?这就需要几百台制冷机不停地工作一整年,而在战争时期,这是不大可能办到的。
英国军部对这个问题十分感兴趣,召集了各门科学家开会,提出找寻大量氦气资源的任务。他们研究讨论了很久,终于回想起1907年美国化学家开迪和马克发兰的一篇研究报告。
开迪和马克发兰在分析天然气的时候曾经发现,在堪萨斯州一个地方的天然气中,含有1.5%的氦气。但是当时没有人想到氦的实际应用,没有重视这个发现。现在,为了制造不会着火爆炸的大飞艇,人们又开始大规模地找氦气,在天然气中找氦气。最后,人们在加拿大的石油气中找到了氦气,于是立即建立起提取氦气的工厂。等到几千立方米的氦气提取出来了,第一次世界大战已经结束了。
液态氦
在本世纪初的几十年里,世界各国都在寻找氦气资源,在当时主要是为了充飞艇。但是到了今天,氦不仅用在飞行上,尖端科学研究,现代化工业技术,都离不开氦,而且用的常常是液态的氦,而不是气态的氦。液态氦把人们引到一个新的领域——低温世界。
前面已经讲过拉姆赛在空气中找氦气的故事。在液态空气的温度下,氦和氖仍然是气体;在液态氢的温度下,氖变成了固体,可是氦仍然是气体。要冷到什么程度,氦才会变成液体呢?
前面已说过,英国物理学家杜瓦在1898年首先得到了液态氢。就在同一年,荷兰的物理学家卡美林•奥涅斯也得到了液态氢。液态氢的沸点是零下253摄氏度,在这样低的温度下,其他各种气体不仅变成液体,而且都变成了固体。只有氦是最后一个不肯变成液体的气体。卡美林•奥涅斯决心把氦气也变成液体。1908年7月,卡美林•奥涅斯成功了,氦气变成了液体。他第一次得到了320立方厘米的液态氦。
要得到液态氢,必须先把氢气压缩并且冷却到液态空气的温度,然后让它膨胀,使温度进一步下降,氢气就变成了液体。要得到液态氦,必须先把氦气压缩并且冷却到液态氢的温度,然后让它膨胀,使温度进一步下降,氦气才能变成液体。液态氦是透明的容易流动的液体,就像打开了瓶塞的汽水一样,不断飞溅着小气泡。液态氦是一种与众不同的液体,它在零下269摄氏度就沸腾了。在这样低的温度下,氢也变成了固体,千万不要使液态氦和空气接触,因为空气会立刻在液态氦的表面上冻结成一层坚硬的盖子。
多少年来,全世界只有荷兰卡美林•奥涅斯的实验室能制造液态氦。直到1934年,在英国卢瑟福那里学习的前苏联科学家卡比查发明了新型的液氦机,每小时可以制造4升液态氦。以后,液态氦才在各国的实验室中得到广泛的研究和应用。在今天,液态氦在现代技术上得到了重要的应用。例如要接收宇宙飞船发来的传真照片或接收卫星转播的电视信号,就必须用液态氦。接收天线末端的参量放大器要保持在液氦的低温下,否则就不能收到图像。
然而,液态氦的奇妙之处还不在于低温。
漏液氦的杯子
卡美林•奥涅斯是第一个得到液氦的科学家。他并不满足,还想使温度进一步降低,以得到固态氦。他没有成功(固态氦是1926年基索姆用降低温度和增大压力的方法首先得到的),却得到了一个没有预料到的结果。
对于一般液体来说,随着温度降低,密度会逐渐增加。卡美林•奥涅斯使液态氦的温度下降,果然,液氦的密度增大了。但是,当温度下降到零下271摄氏度的时候,怪事出现了,液态氦突然停止起泡,变成像水晶一样的透明,一动也不动,好像一潭死水,而密度突然又减小了。这是另一种液态氦。卡美林•奥涅斯把前一种冒泡的液态氦叫做氦Ⅰ,而把后一种静止的液态氦做氦Ⅱ。
把一个小玻璃杯按在氦Ⅱ中。玻璃杯本是空的,但是过了一会,杯底出现了液态氦,慢慢地涨到跟杯子外面的液态氦一样平为止。把这个盛着液态氦的小玻璃杯提出来,挂在半空。看,玻璃杯底下出现了液氦,一滴,两滴,三滴……不一会,杯中的液态氦就"漏"光了。是玻璃杯漏了吗?不,玻璃杯一点也不漏。这是怎么回事呢?原来氦Ⅱ是能够倒流的,它会沿着玻璃杯的壁爬进去又爬出来。这是在我们日常生活中没有碰到过的现象,只有在低温世界才会发生。这种现象叫做"超流动性",具有"超流动性"的氦Ⅱ叫做超流体。
后来,许多科学家研究了这种怪现象,又有了许多新的发现。其中最有趣的是1938年阿兰等人发现的氦刀喷泉。
在一根玻璃管里,装着很细的金刚砂,上端接出来一根细的喷嘴。将这玻璃管浸到氦Ⅱ中,用光照玻璃管粗的下部,细喷嘴就会喷出氦Ⅱ的喷泉,光越强喷得越高,可以高达数厘米。氦Ⅱ喷泉也是超流体的特殊性质。在这个实验中,光能直接变成了机械能。
魔术世界
大家还记得拉姆赛把各种物质放到液态空气中的各种奇妙的实验吧!各种物质放在液态氦里,情况就更奇妙了。
看!在液氦的温度下,一个铅环,环上有一个铅球。铅球好像失去了重量,会飘浮在环上,与环保持一定距离。
再看!在液氦的温度下,一个金属盘子,把细链子系着磁铁,慢慢放到盘子里去。当磁铁快要碰到盘子的时候,链子松了,磁铁浮在盘子上,怎样也不肯落下去。
真像是到了魔术世界!这一切,只能在液态氦的温度下发生。温度一升高,魔术就不灵了,铅球落在铅环上,磁铁也落在金属盘子里了。这是低温下的超导现象。
原来,有些金属,在液态氦的温度下,电阻会消失;在金属环和金属盘中,电流会不停地流动而产生磁场。这时候,磁场的斥力托住了铅球和磁铁,使它们浮在半空中。在低温下,出现了许多奇妙的物理现象。许多重要的物理实验,都要在低温下进行。
目前,世界各国的物理学家还在研究液态氦,希望通过液态氦达到更低的温度,研究各种物质在低温下会发生什么奇妙的变化,会有什么我们目前还不知道的性质。这就产生了物理学的一个新的分支——低温物理学。
结束语
氦,这个奇妙的物质,一直在引起科学家们的注意。科学家们继续研究氦,通过科学实验,不断地为氦写下一页又一页新的历史。
物理学家不仅仅得到了液态氦,还得到了固态氦,他们正在向绝对零度进军(物理学把零下273.16摄氏度叫做绝对零度。这个温度标叫做绝对温标,用K表示。OK就是-273.16℃,而273.16K就是0℃)。从理论上讲,绝对零度是达不到的,但是可以不断接近它。液态氢的沸点是绝对温标20.2度,液态氦的沸点是绝对温标4.2度。在绝对温标2.19度的时候,氦Ⅰ变为氦Ⅱ。1935年,利用"绝热去磁"法,使液态氦冷到绝对温标0.0034度;1957年,达到绝对温标0.00002度;目前已达到跟绝对零度只相差0.000001度了。
天文学家也继续研究着太阳元素。太阳上的氢"燃烧"变成了氦,以后的命运又如何呢?他们发现宇宙间有一些比太阳更炽热的恒星,中心温度达到几亿度。在这些恒星的核心,氢原子核已经都变成了氦原子核,氦原子核又相互碰撞,正在生成着碳原子核和氧原子核,同时放出大量的能。这类恒星橡心脏一样,一会儿膨胀,一会儿收缩,很有规律。为什么会这样?这也是因为氦在起作用。
天文学家还研究了银河系内氢的含量和氦的含量的比值。根据这个比值,有人估算了银河系的年龄有一二百亿年。
氦的历史并没有完,人类认识氦的历史也没有完,而我们这本讲氦的故事,却不得不结束了。
分享:
- 全部评论(0)